On b-coloring of cartesian product of graphs

RAMIN JAVADI and BEHNAZ OMOOMI

Department of Mathematical Sciences
Isfahan University of Technology
84156-83111, Isfahan, Iran

Abstract

A b-coloring of a graph G by k colors is a proper k-coloring of the vertices of G such that in each color class there exists a vertex having neighbors in all the other $k-1$ color classes. The b-chromatic number $\varphi(G)$ of a graph G is the maximum k for which G has a b-coloring by k colors. This concept was introduced by R.W. Irving and D.F. Manlove in 1999. In this paper we study the b-chromatic numbers of the cartesian products of paths and cycles with complete graphs and the cartesian product of two complete graphs.

Key Words: b-chromatic number, b-coloring, dominating coloring.

1 Introduction

Let G be a graph without loops and multiple edges with vertex set $V(G)$ and edge set $E(G)$. A proper k-coloring of graph G is a function c defined on the $V(G)$, onto a set of colors $C = \{1, 2, \ldots, k\}$ such that any two adjacent vertices have different colors. In fact, for every i, $1 \leq i \leq k$, the set $c^{-1}(\{i\})$ is an independent set of vertices which is called a color class. The minimum cardinality k for which G has a proper k-coloring is the chromatic number $\chi(G)$ of G.

A b-coloring of a graph G by k colors is a proper k-coloring of the vertices of G such that in each color class i there exists a vertex x_i having neighbors in all the other $k-1$ color classes. We will call such a vertex x_i, a b-dominating vertex and the set of vertices $\{x_1, x_2, \ldots, x_k\}$ a b-dominating system. The b-chromatic number $\varphi(G)$ of a graph G is the maximum k for which G has a b-coloring by
The \(b \)-chromatic number was introduced by R.W. Irving and D.F. Manlove in [2]. They proved that determining \(\varphi(G) \) is NP-hard for general cases, but it is polynomial for trees. An immediate and useful bounds for \(\varphi(G) \) is:

\[
\chi(G) \leq \varphi(G) \leq \Delta(G) + 1,
\]

where \(\Delta(G) \) is the maximum degree of vertices in \(G \).

The cartesian product of two graphs \(G_1 \) and \(G_2 \), denoted by \(G_1 \square G_2 \), is a simple graph with \(V(G_1) \times V(G_2) \) as its vertex set and two vertices \((u_1, v_1)\) and \((u_2, v_2)\) are adjacent in \(G_1 \square G_2 \) if and only if either \(u_1 = u_2 \) and \(v_1, v_2 \) are adjacent in \(G_2 \), or \(u_1, u_2 \) are adjacent in \(G_1 \) and \(v_1 = v_2 \). In the sequel, where \(|V(G_1)| = m \) and \(|V(G_2)| = n \), we consider the vertex set of the graph \(G_1 \square G_2 \), as an \(m \times n \) array in which the entry \((i, j)\) corresponds to the vertex \((i, j), i \in V(G_1) \) and \(j \in V(G_2) \), and each column induces a copy of graph \(G_1 \) and each row induces a copy of graph \(G_2 \). In Section 3, where \(G_2 = C_n \), the neighbors of entry \((i, j)\) in the row \(i \) are entries \((i, j \pm 1)\). In Section 4, where \(G_2 = P_n \), the neighbors of entry \((i, j)\) in the row \(i \) are entries \((i, j \pm 1)\), for \(2 \leq j \leq n - 2 \) and for \(j = 1 \) and \(j = n \) are \((i, 2)\) and \((i, j - 1)\), respectively. So through this paper all first components of entries are modulo \(|V(G_1)| = m \) and all second components of entries are modulo \(|V(G_2)| = n \).

The \(b \)-chromatic number of the cartesian product of some graphs such as \(K_{1,n} \square K_{1,n} \), \(K_{1,n} \square P_k \), \(P_n \square P_k \), \(C_n \square C_k \) and \(C_n \square P_k \) was studied in [3]. In this paper we study the \(b \)-chromatic numbers of the cartesian products of paths and cycles with complete graphs and the cartesian product of two complete graphs.

2 \(b \)-chromatic number of graph \(K_m \square G \)

In this section we present some results on the \(b \)-chromatic number of the cartesian product of the complete graphs with every graph \(G \).

Proposition 1. Let \(c \) be a \(b \)-coloring of graph \(K_m \square G \) by \(\varphi \) colors, where \(\varphi > m \), and \(v \in V(G) \). Then the column corresponding to the vertex \(v \), contains at most \(\deg_G(v) \) \(b \)-dominating vertices.
Proof. By assumption $\varphi > m$, therefore in the b-coloring c there is at least one color that does not appear in the column corresponding to the vertex v of G, we denote this column by K_m^v. On the other hand this missing color must appear in the neighbors of all b-dominating vertices in K_m^v, which are obviously in different columns. Therefore the number of b-dominating vertices in K_m^v is at most $\deg_G(v)$.

If $d = (d_1, d_2, \ldots, d_n)$ is the degree sequence of a graph G with n vertices, then by Proposition 1, in graph $K_m \circ G$ each column, denoted by $K_m^{(i)}$, $1 \leq i \leq n$, contains at most d_i b-dominating vertices. Therefore, every b-dominating system of G contains at most $\sum_{i=1}^n d_i$ vertices. So we have the following upper bounds for $\varphi(K_m \circ G)$ which improves the given upper bounds in [3].

Corollary 1. If $d = (d_1, d_2, \ldots, d_n)$ is the degree sequence of graph G with n vertices and e edges, then

$$\varphi(K_m \circ G) \leq \sum_{i=1}^n d_i = 2e.$$

Now we prove a lemma on completing a partial proper coloring of graph $K_m \circ G$ for every graph G. A partial proper coloring of a graph is an assignment of colors to some vertices of G, such that the adjacent vertices receive different colors.

Let S_1, \ldots, S_n be some sets. A system of distinct representatives (SDR) for these sets is an n-tuple (x_1, \ldots, x_n) of elements with the properties that $x_i \in S_i$ for $i = 1, \ldots, n$ and $x_i \neq x_j$ for $i \neq j$. It is a well known theorem that the family of sets S_i has an SDR if and only if it satisfies the Hall’s condition, which is for every subset $I \subseteq \{1, 2, \ldots, n\}$, $|\bigcup_{i \in I} S_i| \geq |I|$, [1].

Lemma 1. Let G be a graph and m be a positive integer, which $m \geq 2\Delta(G)$. If c is a partial proper coloring of graph $K_m \circ G$ by m colors, such that each column has no uncolored vertices or at least $2\Delta(G)$ uncolored vertices, then c can be extended to a proper coloring of graph $K_m \circ G$ by m colors.

Proof. In a partial proper coloring of graph $K_m \circ G$ by m colors, consider a column with $k \geq 1$ uncolored vertices v_1, v_2, \ldots, v_k, where by assumption $k \geq$
2Δ(G). Without loss of generality we denote k missing colors by 1, 2, . . . , k. For each i = 1, 2, . . ., k, let Si be the set of colors that can be used to color the vertex vi, properly, so Si ⊆ {1, 2, . . ., k}. For extending this coloring to a proper coloring of this column, it is enough to find an SDR for the family of sets Si, 1 ≤ i ≤ k. For this purpose we show that the family of sets Si, 1 ≤ i ≤ k, satisfies the Hall’s condition. Let I ⊆ {1, 2, . . ., k}, which |I| = r.

If r ≤ Δ(G), then for some i0 ∈ I we have

|∪i∈I Si| ≥ |Si0| ≥ k − Δ(G) ≥ Δ(G) ≥ r = |I|.

If r > Δ(G), then ∪i∈I Si = {1, 2, . . ., k}. Because if a color say i0, 1 ≤ i0 ≤ k, does not appear in any set Si, i ∈ I, then each vertex vi, i ∈ I, has a neighbor say ui of color i0 in the row containing vi. Since all of the vertices ui have the same color, they are in different columns. Hence we must have r = |I| ≤ Δ(G), which is a contradiction. Therefore

|∪i∈I Si| = k ≥ |I|.

So the coloring of each column can be extended and the proof is completed. □

Proposition 2. For every two graphs G and H, if graph H’ is obtained by replacing one of the edges of H with a path of length 3, then φ(G□H’) ≥ φ(G□H).

Proof. Let e = xy be an edge in H and H’ be obtained by replacing e with the path xwzy. Moreover, assume that e is a b-coloring of graph G□H by φ(G□H) colors. We define a b-coloring c’ of graph G□H’ as follows. We color the vertices in the columns corresponding to the vertices w and z in H’ the same as the color of vertices in the columns y and x in the coloring c, respectively. Finally we color the rest of the vertices the same as the coloring c. It is easy to see that c’ is a proper coloring and the b-dominating system in c is a b-dominating system in c’.

□

Corollary 2. For every positive integers m, n,

φ(Km□Cn+2) ≥ φ(Km□Cn) and φ(Km□Pn+2) ≥ φ(Km□Cn).
Proof. Let \(\varphi(K_m \Box C_n) = k \). The graph \(C_{n+2} \) is obtained by replacing one edge \(e = xy \) in \(C_n \) by the path \(xwzy \). So by Proposition 2, there is a \(b \)-coloring \(c \) of graph \(K_m \Box C_{n+2} \) by \(k \) colors. Furthermore by the proof of Proposition 2, we see that there is no \(b \)-dominating vertex in the columns corresponding to the vertices \(w \) and \(z \) in the coloring \(c \). Thus \(c \) is also a \(b \)-coloring of graph \(K_m \Box P_{n+2} \), where \(P_{n+2} \) is obtained by deleting the edge \(wz \) in \(C_{n+2} \).

3 \(b \)-chromatic number of graph \(K_m \Box C_n \)

In this section we determine the exact value of \(\varphi(K_m \Box C_n) \). We know that \(\chi(K_m \Box C_n) = m \) and \(\Delta(K_m \Box C_n) = m + 1 \). Therefore by (1),

\[
m \leq \varphi(K_m \Box C_n) \leq m + 2.
\]

To prove our main theorem in this section, we need the following lemma.

Lemma 2. If \(c \) is a \(b \)-coloring of graph \(K_m \Box C_n \) by \(k \) colors and \(S \) is a \(b \)-dominating system in \(c \), such that:

(i) there is one \(b \)-dominating vertex, say \((r, s)\), \(r \neq m \), in a color class \(x \), such that the vertices \((r, s)\) and \((r, s \pm 1)\) are not in \(S \),

(ii) row \(m \) have no vertex in \(S \),

(iii) when \(n \) is odd, \(c(m, s - 1) \neq x \).

Then \(\varphi(K_{m+1} \Box C_n) \geq k + 1 \).

Proof. Without loss of generality we assume that \((r, s) = (1, 1)\). We present a \(b \)-coloring \(c' \) of graph \(K_{m+1} \Box C_n \) by \(k + 1 \) colors as follows:

\[
c'(i, j) = \begin{cases}
 x & \text{if } (i, j) = (m + 1, 1), \\
 k + 1 & \text{if } (i, j) = (1, 1), \\
 k + 1 & \text{if } (i, j) = (m + 1, 2t), \ 1 \leq t \leq \lfloor \frac{n}{2} \rfloor, \\
 c(m, 2t - 1) & \text{if } (i, j) = (m + 1, 2t - 1), \ 2 \leq t \leq \lceil \frac{n}{2} \rceil, \\
 k + 1 & \text{if } (i, j) = (m, 2t - 1), \ 2 \leq t \leq \lceil \frac{n}{2} \rceil, \\
 c(i, j) & \text{otherwise.}
\end{cases}
\]

From the definition of \(c' \) and the property (iii) it is easy to see that \(c' \) is a proper coloring. Moreover, because of the properties (i), (ii) and since in coloring \(c' \) each
column has a vertex with color \(k + 1 \), every vertex in \(S \) is a \(b \)-dominating vertex in \(c' \). Also the vertex \((1, 1)\) is a \(b \)-dominating vertex with color \(k + 1 \). Therefore \(c' \) is a \(b \)-dominating coloring by \(k + 1 \) colors. \(\square \)

Theorem 1. For positive integers \(m, n \geq 4 \):

\[
\varphi(K_m \square C_n) = \begin{cases}
m & \text{if } m \geq 2n,
m + 1 & \text{if } m = 2n - 1,
m + 2 & \text{if } m \leq 2n - 2.
\end{cases}
\]

Proof. Assume \(m \geq 2n \). By Corollary 1, \(\varphi(K_m \square C_n) \leq 2n \). Hence by (2), we have \(\varphi(K_m \square C_n) = m \).

Now let \(m = 2n - 1 \), by Corollary 1, \(\varphi(K_m \square C_n) \leq 2n = m + 1 \). To prove the equality we present a \(b \)-coloring of graph \(K_m \square C_n \) by \(m + 1 \) colors.

Consider an \((m + 1) \times n\) array and fill some of the entries of this array as follows. We denote this partial proper coloring by \(c \). All second components of entries are modulo \(n \), \(1 \leq j \leq n \), \(1 \leq k \leq \lfloor \frac{n}{2} \rfloor \) and \(r = 0, 1 \).

\[
\begin{align*}
c(2\lceil \frac{j}{2} \rceil - r, j) &= 2j - r,
c(2k, 2k - 2) &= 4k - 1,
c(2k, 2k + 1) &= 4k - 3,
c(m + 1, 2k - r) &= 4k + 2r - 3.
\end{align*}
\]

If \(n \) is odd, then we also define

\[
c(m + 1, n) = c(n, n - 1) = c(n + 1, 1) = 4.
\]

In Figure 1, this array with the filled entries for \(n = 4 \) is shown.

It is not hard to see that, this array with some filled entries is a partial proper coloring of graph \(K_{m+1} \square C_n \), which each column has three filled entries. Since \(m = 2n - 1 \geq 7 \), every column has at least 4 uncolored vertices. Hence by Lemma 1, \(c \) can be extended to a proper coloring of graph \(K_{m+1} \square C_n \) by \(m + 1 \) colors. Now to obtain the desired coloring, we delete the last row. Note that in this coloring of graph \(K_m \square C_n \), each column has exactly one missing color. The set of vertices \(\{ (2\lceil j/2 \rceil - r, j) \mid 1 \leq j \leq n, r = 0, 1 \} \) is a \(b \)-dominating system.
Because for $1 \leq k \leq \lfloor n/2 \rfloor$, the missing color of column $2k$ is $4k - 3$ which is the color of vertices $(2k, 2k + 1)$ and $(2k - 1, 2k - 1)$ and the missing color of column $2k - 1$ is $4k - 1$ which is the color of vertices $(2k, 2k - 2)$ and $(2k - 1, 2k)$.

Now assume $9 \leq m \leq 2n - 2$; by (2), $\varphi(K_m \sq C_n) \leq m + 2$. To show the equality, we present a b-coloring of graph $K_m \sq C_n$ by $m + 2$ colors. Consider an $(m + 2) \times n$ array and fill some of the entries of this array as follows. We denote this partial proper coloring by c. All second components of entries are modulo n and the values are modulo $m + 2$, $1 \leq j \leq \lceil m/2 \rceil + 1$, $1 \leq k \leq \lfloor m/4 \rfloor$ and $r = 0, 1$.

$$c(2j - r, j) = 2j - r,$$
$$c(2k - r, 2k - 2) = 4k + r - 1, \quad c(2k - r, 2k + 1) = 4k + r - 3,$$
$$c(m + 1, 2k - r) = 4k + 2r - 3, \quad c(m + 2, 2k - r) = 4k + 2r - 2.$$

If $m \equiv 0, 3 \pmod{4}$, then we also define

$$c(\lceil m/2 \rceil + 2 - r, \lfloor m/2 \rfloor) = 6 - r,$$
$$c(\lceil m/2 \rceil + 2 - r, \lfloor m/2 \rfloor + 1) = 5 + r,$$
$$c(m + 1 + r, \lceil m/2 \rceil + 1) = 6 - r.$$

In Figure 2, this array with the filled entries for $m = 9$ and $n = 6$ is shown.

It is not hard to see that, this array with some filled entries is a partial proper coloring of graph $K_{m+2} \sq C_n$, which each column has four filled entries. Since $m \geq 9$, every column has at least 4 uncolored vertices. Hence by Lemma 1, c can be extended to a proper coloring of graph $K_{m+2} \sq C_n$ by $m + 2$ colors. Now to
obtain the desired coloring, we delete the last two rows. Note that in this coloring of graph $K_m \square C_n$, each column has exactly two missing colors. Similarly, it is not hard to see that the set of vertices $\{ (2 \lceil j/2 \rceil - r, j) \mid 1 \leq j \leq \lceil m/2 \rceil + 1, r = 0, 1 \}$ is a b-dominating system. Because for $1 \leq k \leq \lceil m/4 \rceil$, the missing colors of column $2k$ are $4k - 3$ and $4k - 2$, while we have $c(2k, 2k+1) = c(2k, 2k-1) = 4k - 3$ and $c(2k-1, 2k+1) = c(2k-2, 2k-1) = 4k - 2$. Moreover, the missing colors of column $2k - 1$ are $4k - 1$ and $4k$, while we have $c(2k, 2k-2) = c(2k-1, 2k) = 4k - 1$ and $c(2k-1, 2k-2) = c(2k, 2k) = 4k$.

Now assume $4 \leq m \leq 8$ and $m \leq 2n - 2$. In Figure 3 we provide a b-coloring of graphs $K_4 \square C_n$, $n = 4, 5$ and $K_7 \square C_n$, $n = 5, 6$. In these colorings the b-dominating system, S is the set of circled vertices. Then we apply Lemma 2 for the given coloring of $K_4 \square C_4$ twice, first for $(r, s) = (3, 4)$ and second for $(r, s) = (2, 3)$. Also, we apply that lemma for the given coloring of graph $K_4 \square C_5$, twice, first for $(r, s) = (3, 4)$ and second for $(r, s) = (3, 4)$. Thus we obtain the desired b-colorings of graphs $K_m \square C_n$, $m = 5, 6$, $n = 4, 5$. Moreover, we apply Lemma 2 for the given colorings of graphs $K_7 \square C_5$ and $K_7 \square C_6$ for $(r, s) = (6, 5)$ and obtain the desired b-colorings of graphs $K_8 \square C_n$, $n = 5, 6$. By Corollary 2, to obtain a b-coloring of graph $K_m \square C_n$, $n \geq t$, it is enough to have a b-coloring of graphs $K_m \square C_t$ and $K_m \square C_{t+1}$. Therefore, from the b-coloring obtained above we have the desired b-coloring of graphs $K_m \square C_n$, $4 \leq m \leq 9$ and $m \leq 2n - 2$. □
4 \textit{b}-chromatic number of graph $K_m \square P_n$

In this section, by using the results of Section 2, we determine the exact value of $\varphi(K_m \square P_n)$. We know that $\chi(K_m \square P_n) = m$ and $\Delta(K_m \square P_n) = m + 1$. Therefore by (1),

\[m \leq \varphi(K_m \square P_n) \leq m + 2. \quad (3) \]

\textbf{Theorem 2.} For positive integers $m, n \geq 4$:

\[\varphi(K_m \square P_n) = \begin{cases}
 m & \text{if } m \geq 2n - 2, \\
 m + 1 & \text{if } 2n - 5 \leq m \leq 2n - 3, \\
 m + 2 & \text{if } m \leq 2n - 6.
\end{cases} \]

\textbf{Proof.} Assume $m \geq 2n - 2$. By Corollary 1, $\varphi(K_m \square P_n) \leq 2(n - 1)$. Hence by (3), $\varphi(K_m \square P_n) = m$.

If $\varphi(K_m \square P_n) = m + 2$, then there is not any \textit{b}-dominating vertex in the first and the last columns of graph $K_m \square P_n$, because the vertices in the first and the last columns are of degree m. Furthermore, by Proposition 1, the other $n - 2$
columns each contains at most two b-dominating vertices. Therefore, $m + 2 = \varphi(K_m \square P_n) \leq 2(n - 2)$. Hence for $m \geq 2n - 5$, we have $\varphi(K_m \square P_n) \leq m + 1$.

Now let $2n - 5 \leq m \leq 2n - 3$, we present a b-coloring of graph $K_m \square P_n$ by $m + 1$ colors. We consider two cases.

Case 1. $m = 2n - 3$.

We define a coloring $c : V(K_m \square P_n) \rightarrow \{1, 2, \ldots, m + 1\}$ by:

$$c(i, j) = \begin{cases}
 m - 1 & \text{if } (i, j) = (m, 1), \\
 m + 1 & \text{if } (i, j) = (3j - 4, j), 1 \leq j \leq n - 1, \\
 i + j - 1 \pmod{m} & \text{otherwise.}
\end{cases}$$

It is not hard to see that the above assignment is a proper coloring of graph $K_m \square P_n$. In fact this assignment presents a partial circular latin rectangle with the rest entries filled as above.

The set $S = \{(m - 1, 1), (3n - 5, n), (3j - 5, j), (3j - 3, j) \mid 2 \leq j \leq n - 1\}$ (the summations are modulo m) is a b-dominating system. Obviously, each vertex dominates $m - 1$ neighbors on its column, which are in different color classes. So for a vertex to be a b-dominating vertex it is enough to dominate a vertex with the color which is missed in its column. The missing color in column j, $2 \leq j \leq n - 1$ is $4j - 5$, in column 1 is m and in column n is $4n - 7$. Moreover, we have $c(m - 1, 1) = m$, $c(3n - 5, n - 1) = 4n - 7$, $c(3j - 5, j + 1) = 4j - 5$, and $c(3j - 3, j - 1) = 4j - 5$. Therefore, the set S is b-dominating system of colors $\{1, 2, \ldots, m + 1\}$. In Figure 5(a), this coloring is shown for $m = 5$, where the circled vertices are b-dominating vertices.

Now let $m = 2n - 5$, consider a b-coloring of graph $K_m \square P_{n-1}$ by $m + 1$ colors as above. We add a column and color it the same as column 1. This yields a b-coloring of graph $K_m \square P_n$ by $m + 1$ colors.

Case 2. $m = 2n - 4$.

As illustrated in Figure 4, $\varphi(K_4 \square P_4) = 5$, the b-dominating vertices are circled.
Figure 4: A b-coloring of graph $K_4 \square P_4$ by 5 colors.

Assume $n \geq 5$, we define the coloring $c : V(K_m \square P_n) \rightarrow \{1, 2, \ldots, m+1\}$ by:

\[
 c(i, j) = \begin{cases}
 m - 1 & \text{if } (i, j) = (m, 1), \\
 m + 1 & \text{if } (i, j) = (3j - 4, j), 1 \leq j \leq \lceil \frac{n}{2} \rceil, \\
 m + 1 & \text{if } (i, j) = (3j - 5, j), \lceil \frac{n}{2} \rceil + 1 \leq j \leq n - 1, \\
 m + 1 & \text{if } (i, j) = (3n - 7, n), \\
 i + j - 1 \pmod{m} & \text{otherwise.}
\end{cases}
\]

It is not hard to see that, the assignment above is a proper coloring of graph $K_m \square P_n$. Similar to Case 1, it can be easily checked that the set \{(m − 1, 1), (3n − 6, n), (3j − 5, j), (3j − 3, j), (i, 3i − 6), (i, 3i − 4) | \lceil \frac{n}{2} \rceil + 1 \leq i \leq n - 1, 2 \leq j \leq \lceil \frac{n}{2} \rceil\} (the summations in the first components are modulo m and in the second components are modulo n) is a b-dominating system. In Figure 5(b) this coloring is shown for $m = 6$, which the circled vertices are b-dominating vertices.

Figure 5: A b-coloring of graphs $K_5 \square P_4$ and $K_6 \square P_5$ by 6 and 7 colors.

Now assume $m \leq 2n - 6$, and let $n' = n - 2$. Since $m \leq 2n' - 2$, by Theorem 1, $\varphi(K_m \square C_{n'}) = m + 2$, $n' \geq 4$. Hence by Corollary 2, $\varphi(K_m \square P_n) \geq m + 2$. Therefore by (3), $\varphi(K_m \square P_n) = m + 2$, for $n \geq 6$.

For $n = 5$ a b-coloring of graph $K_m \square P_n$ is shown in Figure 6, the b-dominating vertices are circled. □
5 \ b\text{-}chromatic number of graph \ K_n \square \ K_n

We know that $\chi(K_n \square K_n) = n$ and $\Delta(K_n \square K_n) = 2n - 2$. So by (1), $n \leq \varphi(K_n \square K_n) \leq 2n - 1$. In this section we improve these bounds and prove that $2n - 3 \leq \varphi(K_n \square K_n) \leq 2n - 2$. Finally we provide a conjecture that $\varphi(K_n \square K_n) = 2n - 3$, $n \geq 5$.

Lemma 3. Let c be a b-coloring of graph $K_n \square K_n$ by $2n - 1$ colors. If two vertices (i, j) and (i, t) are b-dominating vertices in the b-coloring c, then in columns j and t there are no other b-dominating vertices.

Proof. Let c be a b-coloring of graph $K_n \square K_n$ by $2n - 1$ colors. It is obvious that if a vertex (x, y) is a b-dominating vertex in the b-coloring c, then all its $2n - 2$ neighbors must have different colors. So the colors of the vertices in the row x and the column y are different. Now, assume to the contrary that the vertices (i, j), (i, t) and (i', j), $i' \neq i$, are b-dominating vertices. Since the vertex (i, t) is a b-dominating vertex, the vertices in row i and column t all have different colors. Therefore, if $c(i', t) = a$, then no vertex in row i has color a. On the other hand the vertex (i, j) is a b-dominating vertex, hence in column j we must have a vertex with color a. Now, in both row i' and column j we have vertices by color a. It contradicts our assumption that the vertex (i', j) is a b-dominating vertex. By the same reason the vertex (i', t), for $i' \neq i$, is not b-dominating vertex. \qed

Theorem 3. For every positive integer $n \geq 2$, we have

$$\varphi(K_n \square K_n) \leq 2n - 2.$$

Proof. We know that $\varphi(K_n \square K_n) \leq 2n - 1$. Let $\varphi(K_n \square K_n) = 2n - 1$ and c be a b-coloring by $2n - 1$ colors. Without loss of generality we assume that rows 1
to each has at least two \(b \)-dominating vertices and rows \(r + 1 \) to \(n \) each has at most one \(b \)-dominating vertex. Moreover, without loss of generality, we assume that the \(b \)-dominating vertices in the first \(r \) rows are in the first \(s \) columns.

By Lemma 3, in each column \(j \), \(1 \leq j \leq s \), there is only one \(b \)-dominating vertex. If \(r = 0 \) or \(s = n \), then we have at most \(n \) \(b \)-dominating vertices which is a contradiction. The size of the \(b \)-dominating system in coloring \(c \) is at most \(s + (n-r) \). Now if \(r > 0 \) and \(s < n \), then the number of \(b \)-dominating vertices is at most \(s + (n-r) \leq 2n - 1 - r < 2n - 1 \) which also contradicts our assumption.

\(\square \)

Theorem 4. For every positive integer \(n \geq 5 \), we have

\[\varphi(K_n \Box K_n) \geq 2n - 3. \]

Proof. We present a \(b \)-coloring \(c \) by \(2n - 3 \) colors, for two cases \(n \) odd and \(n \) even. First, we define a function \(f : \mathbb{N} \to \mathbb{Z} \) by:

\[
f(x) = \begin{cases}
 x & \text{x is odd}, \\
 x - 2 & \text{x is even}.
\end{cases}
\]

Case 1. \(n \) is odd.

In this case we define the assignment \(c : V(K_n \Box K_n) \to \mathbb{N} \) by:

\[
c((i, j)) = \begin{cases}
 i + j - 1 \pmod{n - 1} & i \leq j \leq n - i - 1, \\
 f(i + j) \pmod{n - 1} & n - i \leq j \leq n - 2, i \leq j, \\
 (i + j - 2 \pmod{n - 2}) + (n - 1) & n - 1 < i \leq n - 1, \\
 n - 3 & (i, j) \neq (n - 1, n - 2)
\end{cases}
\]

For columns \(n - 1 \), \(n \) and row \(n \), the assignment \(c \) is as follows.

\[
c((i, n - 1)) = \begin{cases}
 2i - 2 \pmod{n - 1} & 1 \leq i \leq \frac{n - 1}{2}, \\
 2i - 1 \pmod{n - 1} & \frac{n + 1}{2} \leq i \leq n - 2, \\
 2n - 4 & i = n - 1.
\end{cases}
\]

\[
c((i, n)) = \begin{cases}
 (2i - 2 \pmod{n - 2}) + (n - 1) & i \text{ odd, } i \leq n - 2, \\
 i - 2 \pmod{n - 1} & i \text{ even, } i \leq n - 2, \\
 n - 2 & i = n - 1.
\end{cases}
\]
c((n, j)) = \begin{align*}
&\begin{cases}
 j - 1 \pmod{n - 1} & j \text{ odd}, j \leq n - 3, \\
 (2j - 2) \pmod{n - 2} + (n - 1) & j \text{ even}, j = n - 2, \\
 2n - 5 & j = n,
\end{cases} \\
&\begin{cases}
 j & j - 1 \pmod{n - 1}, j \leq n - 3 , \\
 2n - 5 & j = n - 2, \\
 1 & j = n.
\end{cases}
\end{align*}

The assignment \(c \) is a \(b \)-coloring and the set \(S = \{(i, i), (j + 1, j) \mid 1 \leq i \leq n - 1, 1 \leq j \leq n - 2\} \) is a \(b \)-dominating system. Because the vertices in \(S \) all have different colors and for each vertex in \(S \) the colors in its row and columns all have different colors except two entries. As an example such a coloring for \(n = 7 \) is illustrated in Figure 7, the \(b \)-dominating vertices are circled.

Case 2. \(n \) is even.

In this case we define the assignment \(c : V(K_n \Box K_n) \to \mathbb{N} \) by:

\[
\begin{align*}
c((i, j)) = \begin{cases}
i + j - 2 \pmod{n - 2} & i + 1 \leq j \leq n - i - 1, \\
f(i + j - 1) \pmod{n - 2} & n - i \leq j \leq n - 2, i + 1 \leq j, \\
(i + j - 1) \pmod{n - 1} + (n - 2) & j \leq i \leq n - 1, \\
i + 1 \neq (n - 1, n - 2) & (i, j) \neq (n - 1, n - 2), \\
i + 1 = (n - 1, n - 2) & (i, j) = (n - 1, n - 2).
\end{cases}
\end{align*}
\]

For columns \(n - 1, n \) and row \(n \), the assignment \(c \) is as follows.

\[
c((i, n - 1)) = \begin{cases}
2i - 2 \pmod{n - 2} & 1 \leq i \leq \frac{n - 2}{2}, \\
2i - 1 \pmod{n - 2} & \frac{n}{2} \leq i \leq n - 3, \\
2n - 5 & i = n - 2, \\
2n - 4 & i = n - 1, \\
n - 3 & i = n.
\end{cases}
\]
\[
c(i, n) = \begin{cases}
(2i \mod (n-1)) + (n-2) & i \text{ odd, } i \leq n-2, \\
i - 2 \mod (n-2) & i \text{ even, } i \leq n-2, \\
n - 3 & i = n - 1, \\
1 & i = n.
\end{cases}
\]

\[
c(n, j) = \begin{cases}
(2j - 2 \mod (n-1)) + (n-2) & j \text{ odd, } 3 \leq j \leq n-3, \\
j - 2 \mod (n-2) & j \text{ even, } 3 \leq j \leq n-3, \\
n - 4 & j = 1, \\
2n - 5 & j = n - 2.
\end{cases}
\]

The assignment \(c \) is a \(b \)-coloring and the set \(S = \{(i, i), (j - 1, j) \mid 1 \leq i \leq n - 1, 2 \leq j \leq n - 2\} \cup \{(n - 1, n - 2)\} \) is \(b \)-dominating system. Because the vertices in \(S \) all have different colors and for each vertex in \(S \) the colors in its row and columns all have different colors except two entries. As an example such a coloring for \(n = 8 \) is illustrated in Figure 8, the \(b \)-dominating vertices are circled.

\[\Box\]

\begin{center}
\begin{tabular}{cccccccc}
(7) & (1) & 2 & 3 & 4 & 5 & 6 & 8 \\
8 & (9) & (3) & 4 & 5 & 1 & 2 & 6 \\
9 & 10 & (11) & (5) & 1 & 6 & 4 & 12 \\
10 & 11 & 12 & (13) & (6) & 3 & 1 & 2 \\
11 & 12 & 13 & 7 & (8) & (2) & 3 & 9 \\
12 & 13 & 7 & 8 & 9 & (10) & 11 & 4 \\
13 & 7 & 8 & 9 & 10 & (4) & (12) & 5 \\
4 & 6 & 10 & 2 & 7 & 11 & 5 & 1 \\
\end{tabular}
\end{center}

Figure 8: A \(b \)-coloring of graphs \(K_8 \Box K_8 \) by 13 colors.

Remark. For \(n = 3 \) the only way to have a \(b \)-coloring by 4 colors is Figure 9(a), with the circled vertices as \(b \)-dominating vertices; which is impossible, so \(\varphi(K_3 \Box K_3) = 3 \). For \(n = 4 \) there is a \(b \)-coloring of graph \(K_4 \Box K_4 \) by \(2n - 2 = 6 \) colors, see Figure 9(b).

Finally, we propose the following conjecture.

Conjecture 1. For every positive integer \(n \geq 5 \), \(\varphi(K_n \Box K_n) = 2n - 3 \).
Figure 9: A partial b-coloring of graphs $K_3 \Box K_3$ and $K_4 \Box K_4$.

References

